Nicolas Cerardi

- 1st year PhD student at CEA DAp
- XXL Consortium, under the supervision of M.Pierre

<u>Cosmological analysis of the XXL</u> <u>Cluster Sample</u> Research includes

- Redshift measurement from NTT + VLT
- Forecasts for Athena
- Cosmological analysis
- Use of IA to
 - Generate X-ray fields from DM sims
 - Cosmological analysis with scaling laws parameters as nuisance parameters

Cosmological analysis - principles

Cluster catalogue :

- 50 deg2 at 10ks depth with XMM Newton (7Ms)
- Sample of X-ray detected Clusters Up to z=1 Down to a few 1e13Msol/h

Cosmological analysis

- Forward modelling of the cluster population
- Cosmological fit on Xray observables diagrams (Number counts)
- Dimensions : CR, HR, z

dndzdcrdhr athena 1A output

= Coulour Magnitude diagram in Xray ! avoids M estimation which is cosmo dependant

Athena related work

- Detect clusters in Athena/WFI AGN Survey
- 2 configurations
 - 50 deg2, 80ks
 - 200 deg2, 20ks
- Approximation of the selection function in M-z plane

Next step : Fisher analysis to provide cosmological forecasts

Mass detection limit in Mass – z plane

Asif Iqbal Ahangar **Post-Doctoral Research Fellow CEA Saclay**

RESEARCH EXPERTISE

- Galaxy clusters
 - lacksquare
- CMB Cosmology and Cluster cosmology
 - CMB
 - important for robust cluster cosmology

Thermal properties of ICM: Using X-ray data from XMM-Newton and Chandra

• Feedback in the ICM: Comparing the thermal profiles from non-radiative simulations with the observations, Modeling the AGN feedback in the ICM using analytic models: Sound waves (Fabian 2004), effervescent heating (Ruszkowski & Begelman 2002)

• **CMB Power spectrum**: Understanding the Low CMB power anomaly in the Planck

• SZ power spectrum: Implication of Feedback on the SZ power spectrum which is

Galaxy clusters

- Part of CHEX-MATE (originally called Heritage) collaboration with include a group more than 50 researchers with expertise in X-ray, lensing, radio, simulations
- CHEX-MATE project was awarded 3Ms of XMM-Newton observation time to study the sample 118 galaxy clusters in Planck SZ cluster catalog
- Currently developing the neural network technique to deproject the X-ray derived projected temperature and density radial profiles in CHEX-MATE collaboration (CEA team: Iqbal, Pratt, Bobin)
 - Neural networks are well adaptive constrain complex 2D maps and radial profiles; by changing the network topology it would be able to handle different level of complexity and non-linearity in the profiles.
 - This is crucial so as to make most use of hight quality data such as Athena

Tier-1: SNR>6.5, z=[0.05, 0.2] Tier-2: SNR>6.5, z<0.6, M500>7.25e14

Some preliminary Neural Network model of True 3D temperature deconvolution from projected 2D profiles

- Built a temperature model using CNN using profiles from simulations • Fit 2D Temperature profile with Noise (brown line) to CNN model • Recovered 3D temperature profile (orange line)

- True 3D temperature profile (black line)

